Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.

Identifieur interne : 000322 ( Main/Exploration ); précédent : 000321; suivant : 000323

Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.

Auteurs : Emiliano Panieri [Italie] ; Carlo Millia [Belgique] ; Massimo M. Santoro [Belgique]

Source :

RBID : pubmed:28192232

Descripteurs français

English descriptors

Abstract

Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H2O2) levels and glutathione redox potential (EGSH), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.

DOI: 10.1016/j.freeradbiomed.2017.02.022
PubMed: 28192232


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Real-time quantification of subcellular H
<sub>2</sub>
O
<sub>2</sub>
and glutathione redox potential in living cardiovascular tissues.</title>
<author>
<name sortKey="Panieri, Emiliano" sort="Panieri, Emiliano" uniqKey="Panieri E" first="Emiliano" last="Panieri">Emiliano Panieri</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Millia, Carlo" sort="Millia, Carlo" uniqKey="Millia C" first="Carlo" last="Millia">Carlo Millia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Santoro, Massimo M" sort="Santoro, Massimo M" uniqKey="Santoro M" first="Massimo M" last="Santoro">Massimo M. Santoro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium. Electronic address: massimo.santoro@unito.it.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28192232</idno>
<idno type="pmid">28192232</idno>
<idno type="doi">10.1016/j.freeradbiomed.2017.02.022</idno>
<idno type="wicri:Area/Main/Corpus">000371</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000371</idno>
<idno type="wicri:Area/Main/Curation">000371</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000371</idno>
<idno type="wicri:Area/Main/Exploration">000371</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Real-time quantification of subcellular H
<sub>2</sub>
O
<sub>2</sub>
and glutathione redox potential in living cardiovascular tissues.</title>
<author>
<name sortKey="Panieri, Emiliano" sort="Panieri, Emiliano" uniqKey="Panieri E" first="Emiliano" last="Panieri">Emiliano Panieri</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Millia, Carlo" sort="Millia, Carlo" uniqKey="Millia C" first="Carlo" last="Millia">Carlo Millia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Santoro, Massimo M" sort="Santoro, Massimo M" uniqKey="Santoro M" first="Massimo M" last="Santoro">Massimo M. Santoro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium. Electronic address: massimo.santoro@unito.it.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven</wicri:regionArea>
<wicri:noRegion>Leuven</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>6-Aminonicotinamide (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Animals, Genetically Modified (MeSH)</term>
<term>Buthionine Sulfoximine (pharmacology)</term>
<term>Cardiovascular System (cytology)</term>
<term>Cardiovascular System (drug effects)</term>
<term>Cardiovascular System (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cell Nucleus (ultrastructure)</term>
<term>Cytosol (metabolism)</term>
<term>Cytosol (ultrastructure)</term>
<term>Embryo, Nonmammalian (MeSH)</term>
<term>Embryonic Development (genetics)</term>
<term>Endothelial Cells (drug effects)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Endothelial Cells (ultrastructure)</term>
<term>Gene Expression (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (analysis)</term>
<term>Glutathione (metabolism)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Hydrogen Peroxide (analysis)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondria (ultrastructure)</term>
<term>Myocytes, Cardiac (drug effects)</term>
<term>Myocytes, Cardiac (metabolism)</term>
<term>Myocytes, Cardiac (ultrastructure)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Pentose Phosphate Pathway (drug effects)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Zebrafish (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>6-Amino-nicotinamide (pharmacologie)</term>
<term>Animal génétiquement modifié (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Buthionine sulfoximine (pharmacologie)</term>
<term>Cellules endothéliales (effets des médicaments et des substances chimiques)</term>
<term>Cellules endothéliales (métabolisme)</term>
<term>Cellules endothéliales (ultrastructure)</term>
<term>Cytosol (métabolisme)</term>
<term>Cytosol (ultrastructure)</term>
<term>Danio zébré (MeSH)</term>
<term>Développement embryonnaire (génétique)</term>
<term>Embryon non mammalien (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (analyse)</term>
<term>Glutathion (métabolisme)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mitochondries (ultrastructure)</term>
<term>Myocytes cardiaques (effets des médicaments et des substances chimiques)</term>
<term>Myocytes cardiaques (métabolisme)</term>
<term>Myocytes cardiaques (ultrastructure)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Noyau de la cellule (ultrastructure)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (analyse)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Système cardiovasculaire (cytologie)</term>
<term>Système cardiovasculaire (effets des médicaments et des substances chimiques)</term>
<term>Système cardiovasculaire (métabolisme)</term>
<term>Voie des pentoses phosphates (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glutathione</term>
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Green Fluorescent Proteins</term>
<term>Hydrogen Peroxide</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>6-Aminonicotinamide</term>
<term>Buthionine Sulfoximine</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glutathion</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Système cardiovasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Cardiovascular System</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cardiovascular System</term>
<term>Endothelial Cells</term>
<term>Myocytes, Cardiac</term>
<term>Pentose Phosphate Pathway</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cellules endothéliales</term>
<term>Myocytes cardiaques</term>
<term>Système cardiovasculaire</term>
<term>Voie des pentoses phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Embryonic Development</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Développement embryonnaire</term>
<term>Glutarédoxines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cardiovascular System</term>
<term>Cell Nucleus</term>
<term>Cytosol</term>
<term>Endothelial Cells</term>
<term>Mitochondria</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules endothéliales</term>
<term>Cytosol</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Mitochondries</term>
<term>Myocytes cardiaques</term>
<term>Noyau de la cellule</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
<term>Système cardiovasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>6-Amino-nicotinamide</term>
<term>Buthionine sulfoximine</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytosol</term>
<term>Endothelial Cells</term>
<term>Mitochondria</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Embryo, Nonmammalian</term>
<term>Gene Expression</term>
<term>Microscopy, Fluorescence</term>
<term>Oxidation-Reduction</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Animal génétiquement modifié</term>
<term>Animaux</term>
<term>Cellules endothéliales</term>
<term>Cytosol</term>
<term>Danio zébré</term>
<term>Embryon non mammalien</term>
<term>Expression des gènes</term>
<term>Microscopie de fluorescence</term>
<term>Mitochondries</term>
<term>Myocytes cardiaques</term>
<term>Noyau de la cellule</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) levels and glutathione redox potential (E
<sub>GSH</sub>
), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28192232</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>109</Volume>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Real-time quantification of subcellular H
<sub>2</sub>
O
<sub>2</sub>
and glutathione redox potential in living cardiovascular tissues.</ArticleTitle>
<Pagination>
<MedlinePgn>189-200</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0891-5849(17)30083-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2017.02.022</ELocationID>
<Abstract>
<AbstractText>Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) levels and glutathione redox potential (E
<sub>GSH</sub>
), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Panieri</LastName>
<ForeName>Emiliano</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Millia</LastName>
<ForeName>Carlo</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Santoro</LastName>
<ForeName>Massimo M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium. Electronic address: massimo.santoro@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>329-89-5</RegistryNumber>
<NameOfSubstance UI="D015120">6-Aminonicotinamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5072-26-4</RegistryNumber>
<NameOfSubstance UI="D019328">Buthionine Sulfoximine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015120" MajorTopicYN="N">6-Aminonicotinamide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030801" MajorTopicYN="N">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019328" MajorTopicYN="N">Buthionine Sulfoximine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002319" MajorTopicYN="N">Cardiovascular System</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047108" MajorTopicYN="N">Embryonic Development</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010427" MajorTopicYN="N">Pentose Phosphate Pathway</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cardiomyocytes</Keyword>
<Keyword MajorTopicYN="Y">Endothelial cells</Keyword>
<Keyword MajorTopicYN="Y">Redox metabolism</Keyword>
<Keyword MajorTopicYN="Y">Rogfp2 probes</Keyword>
<Keyword MajorTopicYN="Y">Subcellular redox biology</Keyword>
<Keyword MajorTopicYN="Y">Zebrafish model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28192232</ArticleId>
<ArticleId IdType="pii">S0891-5849(17)30083-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2017.02.022</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>Italie</li>
</country>
<region>
<li>Piémont</li>
</region>
<settlement>
<li>Turin</li>
</settlement>
</list>
<tree>
<country name="Italie">
<region name="Piémont">
<name sortKey="Panieri, Emiliano" sort="Panieri, Emiliano" uniqKey="Panieri E" first="Emiliano" last="Panieri">Emiliano Panieri</name>
</region>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Millia, Carlo" sort="Millia, Carlo" uniqKey="Millia C" first="Carlo" last="Millia">Carlo Millia</name>
</noRegion>
<name sortKey="Santoro, Massimo M" sort="Santoro, Massimo M" uniqKey="Santoro M" first="Massimo M" last="Santoro">Massimo M. Santoro</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000322 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000322 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28192232
   |texte=   Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28192232" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020